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Abstract. As a by-product of a finite-size Bethe ansatz calculation in statistical mechanics,
Kim has established, by an indirect route, three mathematical identities rather similar to the
conjugate modulus relations satisfied by the elliptic theta constants. However, they contain

factors such as 1− q
√
n and 1− qn2

, instead of 1− qn. We show that there is a fourth relation
that naturally completes the set, in much the same way as there are four relations for the four
elliptic theta functions. We derive all of them directly by proving and using a specialization of
Weierstrass’ factorization theorem in complex variable theory.

1. Introduction

Kim (1996) has obtained the leading finite-size corrections to the spectra of the asymmetric
XXZ chain and the related six-vertex model, near the antiferromagnetic phase boundary at
zero vertical field. He also performed the calculation at zero horizontal field. These results
are related by a 90◦ rotation, which yields the following three identities, true for all real
positiveτ :

∞∏
n=−∞

[1+ p(2n−1)2] = ((qq)−c
∞∏
n=1

(1+ q
√

2n−1)2(1+ q
√

2n−1)2 (1)

∞∏
n=−∞

(1+ p4n2
) = (qq)−c

∞∏
n=1

(1− q
√

2n−1)2(1− q
√

2n−1)2 (2)

∞∏
n=−∞

[1− p(2n−1)2] = 4(qq)d
∞∏
n=1

(1+ q
√

2n)2 (1+ q
√

2n)2. (3)

Here

c = (√2− 1)ζ( 3
2)/(4π) = 0.086 109 29. . .

d = ζ( 3
2)/(2π

√
2) = 0.293 995 52. . . p = e−π/τ

q = e−π
√

iτ q = e−π
√−iτ .

All square roots herein are chosen to be in the right half plane. Byqλ, qλ we mean e−πλ
√

iτ ,
e−πλ

√−iτ , respectively.
These identities (1)–(3) are reminiscent of the conjugate modulus identities of the elliptic

theta constantsH1(0),2(0),21(0) (section 21.51 of Whittaker and Watson 1950, p 75 of
Courant and Hilbert 1953, equation 15.7.2 of Baxter 1982). However, in those identities
q (or rather e−πτ ) and p are raised to a power proportional ton, rather thann2 or

√
n.
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We would like to have a direct proof of (1)–(3). We obtain one here by using the Poisson
transformation and complex variable theory to establish the general result (5). We specialize
this to (14), from which we obtain a fourth identity:

∞∏
n=1

(1− p4n2
)2 = πτ(qq)d

∞∏
n=1

(1− q
√

2n)2(1− q
√

2n)2. (4)

This is analogous to the conjugate modulus identity forH ′(0).
We can write the products in (1)–(3) in terms of the type of products occurring in

(4) by using the elementary identities 1+ x = (1 − x2)/(1 − x) and
∏
n f (2n − 1) =∏

n[f (n)/f (2n)]. Write identity (j), for a given value ofτ , as(j, τ ). Then in this way we
find that (2, τ ) can be obtained from the ratio(4, τ/2) : (4, τ ). Also, (3, τ ) follows from
(4, 4τ):(4, τ ). Finally, (1, τ ) can be obtained from the ratio(2, 4τ):(2, τ ), or alternatively
from (3, τ/2):(3, τ ). Thus (4) implies (1)–(3).

2. Proof of identity (4)

We begin by proving a general theorem. LetF(z) be a meromorphic function of a complex
variable such that:

(i) logF(z) is analytic on the real axis and logF(x) is Fourier analysable;
(ii) the integral

∫∞
−∞ eikxF ′(x)/F (x) can be closed round the upper half plane for

Rek > 0, round the lower half plane for Rek < 0 (i.e. there exists a discrete sequence of
ever increasing appropriate arcs such that the integral over the arc tends to zero);

(iii) the zeros and poles ofF(z) in the UHP are atu1, u2, . . ., andmr is the multiplicity
of the zero atur (regarding poles as zeros with negative multiplicity: thus a pole of order
j has multiplicity−j ). Similarly, the zeros and poles in the LHP are atv1, v2, . . ., with
multiplicities n1, n2, . . ..

Then, for all real positivex andδ,
∞∏

n=−∞
F(x + nδ) = exp

[
δ−1

∫ ∞
−∞

logF(t) dt

]∏
r

[1− e2π i(ur−x)/δ]mr
∏
r

[1− e2π i(x−vr )/δ]nr

(5)

the first product on the RHS being over the zeros and poles in the UHP, the second over
those in the LHP.

This identity is a variant of Weierstrass’ factorization theorem (section 7.6 of Whittaker
and Watson 1950). One can readily verify that both sides, considered as functions ofx,
have the same zeros and poles.

Proof. To prove this theorem, letg(k) be the Fourier transform of logF(x):

g(k) =
∫ ∞
−∞

eikx logF(x) dx. (6)

By ‘Fourier analysable’ in requirement (i) we mean that this integral is absolutely
convergent, for all realk.

Then from the Poisson transform (pp 75–7 of Courant and Hilbert 1953, equation 15.8.1
of Baxter 1982) applied to the function logF(x+a), wherea is an arbitrary real parameter,

∞∑
n=−∞

logF(a + nδ) = δ−1
∞∑

n=−∞
e−2π ina/δg(2πn/δ). (7)
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Integrating (6) by parts, noting that logF(x) necessarily tends to zero asx →±∞,

g(k) = (i/k)
∫ ∞
−∞

eikxF ′(x)/F (x) dx. (8)

If k > 0, it follows from requirement (ii) that

g(k) = −2π

k

∑
r

mre
ikur (9)

while for k < 0

g(k) = 2π

k

∑
r

nre
ikvr (10)

the sums being over the zerosur andvr , respectively.
Substituting these expressions into the RHS of (7) and interchanging the order of the

summations, we obtain
∞∑

n=−∞
logF(a + nδ) = g(0)

δ
+
∑
r

mr log[1− e2π i(ur−a)/δ] +
∑
r

nr log[1− e2π i(a−vr )/δ].

(11)

Exponentiating and replacinga by x, we obtain the desired result (5). �

Corollaries. Let y be real, in the range−1< y < 1. Define

s = eiπy w = eiπx (12)

F(z) = 1+ se−πz2/τ . (13)

Regardy andτ as constants: thenF(z) is entire, with only simple zeros, and satisfies
conditions (i)–(iii). Setδ = 2 and use the above definitions ofp, q, q. Then (5) becomes,
for all real x,
∞∏

n=−∞
[1+ sp(2n+x)2] = (qq)−h(s)

∞∏
n=1

{[1− wq
√

2n−1−y ][1 − w−1q
√

2n−1−y ]

×[1− wq
√

2n−1+y ][1 − w−1q
√

2n−1+y ]} (14)

where

h(s) = (2π)−3/2
∫ ∞
−∞

log(1+ se−t2) dt =
∞∑
r=1

(−1)r−1sr

π(2r)3/2
. (15)

Thush(−1) = −d, h(1) = c.
Settingx = 0 and lettingy → 1, we obtain identity (4). (Then = 0 factor on the LHS,

and the first twon = 1 factors on the RHS, vanish in this limit: we have to evaluate them
to leading non-zero order and then take their ratio.)

As we have indicated above, this is sufficient to establish Kim’s three identities (1)–(3).
However, we also note that (14) contains all of (1)–(4) as special cases: (1) can be obtained
by settingx = −1 andy = 0; (2) by settingx = y = 0; and (3) by settingx = −1 and
y = 1.

Relation (14) plays a similar role to the conjugate modulus relation satisfied by the
elliptic theta functions for arbitrary values of their argument. It is interesting to speculate
whether the products therein, considered as functions ofx or y, have any other properties
resembling elliptic functions. For instance, are there algebraic relations corresponding to
sn2u+ cn2u = 1 or k2+ k′2 = 1?
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Note added in proof. The author is indebted to George E Andrews for pointing out that equation (4) is stated
(without reference or derivation) by G H Hardy and S Ramanujan in section 7.3 of their paper on asymptotic
formulae in combinatorial analysis (1918Proc. London Math. Soc.17 75–115). This is reprinted in volume 1 of
Hardy G H 1966Collected Papers(Oxford: Clarendon) p 335.
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